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ON THE DIVERGENCY OF THE EQUATION OF 

HIGH DENSITIES 
STATE OF THE HARD-SPHERE FLUID AT 

M. J. MAESO, J. R. SOLANA*, J. AMOROS AND E. VILLAR 

Departamento de Fisica Aplicada, Universidad de Cantabria, 39005 Santander, Spain 

(Receioed 21 October 1992) 

The possible existence and situation of a singularity in the equation of state of the hard-sphere fluid at 
high densities is analysed from the existing simulation data, the known virial coefficients and Pade 
approximants. The convenience of introducing a prefixed pole in obtaining approximants for the equation 
of state of the hard-sphere fluid on the basis of the virial expansion is also discussed. 

KEY WORDS: Hard spheres, equation of state, Padi  approximants, singularities, phase transitions, 
Kauzmann paradox. 

INTRODUCTION 

In spite of its simplicity, the hard-sphere system is of great interest, since it presents 
several common features with real fluids. For example, as shown by simulation data, 
the hard-sphere system presents a gaseous state', a crystalline state2, and several 
glassy states3. In addition, the hard-sphere fluid is the most common reference system 
in perturbation theories of fluids4, which requires the knowledge of an accurate 
analytical equation of state of the reference fluid, especially in the high density region. 

For the hard-sphere fluid there has been a considerable amount of work devoted 
to the obtention of the virial expansion of the equation of state. However, the higher 
virial coefficients are difficult to calculate and, for this fluid, only the first seven are 
known. A question which arises is whether information about other phases, such as 
glass or solid, can be obtained from the known terms of the virial series of the fluid. 
This question is intimately related to some aspects such as instabilities and di- 
vergencies of the equation of state at close packing. 

Several attempts have been made5-" in order to determine instabilities and 
divergencies starting from the virial expansion. However, results seems to be con- 
tradictory. Some of them predicts instabilities whereas some others predicts di- 
vergencies for different values of close packing corresponding to either glass or solid. 
The aim of this work is to clarify these issues analyzing the problem from several 
viewpoints. 

* To whom correspondence should be addressed. 
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I14 M. J. MAESO el al. 

THE EQUATION OF STATE OF THE HARD-SPHERE SYSTEM FROM 
SIMULATION DATA 

Since the pioneering work of Metropolis et uI." much work has been devoted to the 
study of the equilibrium properties of the hard-sphere system. Thus, the equation of 
state of the fluid has been accurately determined' in the range 1.6 5 V/Vo  I 25, 
where Vo = N g 3 / @  is the closest packing volume for spheres of diameter 6, by 
means of 4000 particles simulations. The results are well reproduced by means of the 
well-known Carnahan-Starling (CS) equation of state'': 

where J' = Nc,/V is the packing fraction for spheres of volume G', = na3/6. 
The equation of state of the solid has been determined' in the range 1.005 I 

V/V,  I 1.42 by means of molecular dynamics simulation of 108 to 4000 face-centered 
hard spheres. The data are well reproduced by means of the expre~sion '~:  

3 
Z = + 2.566 + 0.55% - 1.19a' + 5 . 9 5 ~ ~  

Y 

where r = (V  - Vo)/Vo. The melting and freezing densities have also been de- 
terminedI3 and correspond to values of V/V,  of 1.352 and 1.495, respectively. 

Of special interest to us is the 512-particle molecular dynamics simulations of 
Woodcock3 for reduced densities p* = Na3/V > 0.943, the normal freezing density. 
His data show that the system remains fluid at metastable equilibrium in the density 
range 0.943 < p* < 1.085. At this latter density the system unavoidably crystallises 
spontaneously, since the time for homogeneous nucleation is ldwer than the time 
necessary for the equilibration of the fluid. Of course crystallisation can also take 
place at any density in the metastable range. In this region, the equation of state of 
the fluid is also well reproduced by means of the CS equation (1). 

In the same work, an amorphous or glassy (non-equilibrium) solid was obtained 
by means of rapid quenching (thus avoiding crystallisation) of the fluid at an initial 
reduced density of p* = 1.085. The amorphous solid was shown to have a residual 
volume of V," = 1.129V0, and its equation of state is well reproduced by means of 
the self-consistent free volume equation of stateI4: 

provided that the close packing volume V,  is substituted by the above mentioned 
residual volume V,". 

Another glassy state was obtained3 in a similar way as the preceding but starting 
from the fluid at the normal freezing density p* = 0.943. The resulting residual volume 
was V," = 1.163V0, which corresponds to the so-called Bernal density'"'' 
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HARD-SPHERE FLUID I I5 

The fact that the hard-sphere fluid undergoes a phase transition, at sufficiently 
high densities, either to a crystalline solid or to an amorphous solid is a necessary 
condition. This is due to Kauzmann’s paradox”, according to which, if the entropy 
of a high density fluid can be extrapolated indefinitely towards increasing densities, 
then it would finally become lower than that of the crystalline solid thus violating 
the third principle of thermodynamics. 

Although it has been pointed out” that some of the simulation data of Woodcock 
in the metastable fluid region do not correspond to a fully equilibrated system, his 
results seem to indicate that there is no singularity in the equation of state of the 
hard-sphere fluid, since the system undergoes a phase transition either to a crystalline 
or to a glassy state, before reaching any pole. Obviously, the pressure in this latter 
states presents divergencies at the close packing densities corresponding to the 
residual volumes previously mentioned. However, it should be noted that these states 
are different from the fluid state, and such poles must not be attributed to the 
fluid. 

THE EQUATION OF STATE OF THE HARD-SPHERE FLUID FROM THE 
VIRIAL EXPANSION 

The compressibility factor 2 of a fluid can be expressed as a series expansion in 
powers of the density, the virial expansion, in the form: 

I z = 1 + c B,p’ - ’  
i = 2  

(4) 

As we mentioned previously, for the hard-sphere fluid only the first seven coeffi- 
cients of this expansion have been determined from first principles (the last three with 
some uncertainty). They are”: 

B ,  b = $to3, B31bZ = 518, B4/B3 = 0.28695, 

BSlh4 = 0.1 10252 + 0.000001, B61bs = 0.0389 k 0.0004, arid 

B,lb6 = 0.0137 f 0.0006 (5) 

The most frequently suggested poles for the equation of state of the hard-sphere 
fluid are the regular close packing density, corresponding to a volume V, or a packing 
fraction yo = 0.74048, and the Bernal density, corresponding to a volume V,” = 
1.163 V,, or packing fraction y ,  = 0.6366. Hoste and Van DaelZ0 have drawn for 
j’ = yo  and J = y, the inverse of the compressibility factor Z, as determined by the 
virial expansion (4). with j = p*n/6, as a function of n-’, where n is the number of 
virial coefficients considered. By visual extrapolation they obtain evidence that for 
n = ix1 the value of 2- ’  may be zero for J, = y o ,  but not for y = y,. 

However, theoretical equations of state such as the Thiele’’ and Wertheim” 
solutions of the Percus-Yevick equation or the scaled particle theoryz3 predict poles 
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at y = 1, as does the Carnahan-Starling equation (1). Although this is an unrealistic 
pole, it being impossible to completely fill space with spheres, we have also considered 
this possibility. 

In Figure 1 we have plotted Z -  ’ from (4) and ( 5 )  as a function of n- for the three 
packing fractions mentioned. It is clear that any extrapolation towards n = co is 
uncertain. Moreover, if we accept that Z -  ’ approaches to zero as n increases towards 
infinite for y = yo, this occurs more clearly for the unrealistic value y = 1, as Figure 
1 shows. On the other hand, we must take into account that we cannot prejudge 
what would happen if more virial coefficients were known. In this sense, although 
estimated values of the virial coefficients B, to B , ,  have been obtained’ from the 
expansion of an accurate equation of state, they must be considered with some 
caution, since different equations of state will lead to different  estimation^'^. 

The preceding discussion is based on the assumption that the compressibility factor 
must become infinite for a certain value of the packing fraction. However, if the 
equation of state presents an instability leading to a phase transition at high densities, 
as seems to be the case from the simulation data analyzed in the previous section, 
the compressibility coefficient, and consequently the slope of the pressure, must 
become negative. Consequently, the pressure and the compressibility factor must 
present a maximum and a plot such as that of Figure 1 should exhibit a minimum 
if a sufficiently large number n of virial coefficients were considered. 
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HARD-SPHERE FLUID 117 

Thus, the direct analysis of the truncated virial expansion seems to be mean- 
ingless. 

THE EQUATION OF STATE OF THE HARD-SPHERE FLUID FROM PADE 
APPROXTMANTS 

Since the virial expansion (4) converges slowly, certain types of approximants have 
been proposed with the aim of accelerating the convergency of that series. One of 
the most widely used methods is that of Pade approximantsZ4. The [L/AfJy) Pade 
approximant for the compressibility factor Z is a quotient of polynomials of the form: 

with the condition that L + M I  n - 1, where n is the number of known virial 
coefficients. The undetermined coefficients pi and q i  are obtained from the condition 
that the expansion of (6)  in power series of y must reproduce the first L + M + 1 
virial coefficients. 
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Figure 2 Compressibility factor Z for the hard-sphere fluid as a function of the density in units of the 
close packing density x = pipo = Vo/V. Circles: simulation data for the stable fluid, from Ref. I .  Squares: 
simulation data for metastable fluid from Ref. 3. Dash-dotted line: [3/1] Pade approximant. Dashed line: 
[2/4], [2/3] and [3/3] approximants (nearly indistinguishable at the scale of the figure). Continuous line: 
[2/4] and [3/3] approximants with the values of B,  and B ,  given in Table 1 (all of these approximants 
are indistinguishable at the scale of the figure). 
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Extensive studies on the behaviour of the Pade approximants for the equation of 
state of the hard-sphere fluid have been made by Aguilera et aL6v7. From the analysis 
of the approximants [2/4], [2/3], [3/1] and [3/3] divergencies for values of y close 
to y, were obtained6. They consider y ,  to be the correct packing fraction for the 
divergency of the pressure of the hard-sphere fluid and suggest this result as a 
criterion for the goodness of an equation of state for this fluid. However, as we can 
see in Figure 2, none of these approximants reproduce the simulation data'-3 at high 
densities with enough accuracy. Consequently, from the preceding results we cannot 
ensure that the equation of state diverges at packing fraction y,. 

On the other hand, the analysis of the approximants [0/2], [1/2], [0/3], [0/5], 
[ 1/51 and [0/6] revealed' maximums in the pressure for increasingly higher densities 
reaching for the [0/6] approximant a value of p* = 1.033, corresponding to V/V,  = 
1.369, in reasonable agreement with the value V / V ,  = 1.352 obtainedI3 for the 
freezing volume as mentioned previously. However, as Figure 3 shows, all these 
approximants are far from accurately reproducing the simulation data for the 
equation of state at high densities. Nevertheless, these results seem to be promising 
since the accuracy increases as the value of L + M ,  or equivalently the number 
n = L + M + 1 of virial coefficients, considered for obtaining the approximant 
increases. However, in order to obtain enough accuracy, and thus conclusive results, 
it probably would be necessary to know much more virial coefficients. 

We can make a more reliable analysis from the work of Erpenbeck and Wood' 
who fitted the values of B ,  and B, ,  within their uncertainty, on the basis of the best 
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Figure 3 Pressure of the hard-sphere tluid in units of N k T / V ,  as a function of I = V,/V. Lines from top 
to down: approximants [0/6]  and [l/5] (nearly indistinguishable at the scale of the figure), [O/S], [ O j Z ] ,  
[0/3] and [ l/2]. Points: simulation data as in Figure 2. 
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Table 1 Fitted values of the two higher virial 
coefficients for the [3/3] and [4/2] Pade ap- 
proxirnants, from Ref. 1. 

Approxirnant E6/bs B,/b6 

[3/31 0.039009 0.0 13060 
0.039000 0.0 13056 
0.038996 0.01 3067 

0.0 13063 0.038989 
[4/21 

fitting of the [4/2] and [3/3] Padt approximants to their simulation data. For each 
of these two approximants they give two sets of values for B, and B, ,  listed in Table 
1, which agree to four decimal figures with those of ( 5 )  within uncertainty. The optimal 
choice is the [4/2] approximant with B,/b5 = 0.0390 and B,/b6 = 0.01307. When we 
use the fitted values of Table 1 for B, and B, in conjunction with the corresponding 
[3/3] or [4/2] Pade approximants, we obtain that none of them predict poles in the 
range 0 5 y I 1. Instead, they predict maxima for the pressure at packing fractions 
around y = 0.88 (or ?c = Vo/V = 1.19). Moreover, although the fittings were made to 
simulation data corresponding to the stable fluid (p* I 0.943 or x < 0.667), these 
approximants are very accurate for the whole range of densities, including the 
metastable fluid (0.943 < p* < 1.085 or 0.667 < x < 0.767), as Figure 2 shows. 

DISCUSSION 

From the direct analysis of the virial series made in the second section of this work, 
it seems difficult to reach conclusions about the possible existence and situation of 
a pole in the equation of state of the hard-sphere fluid. On the other hand, the 
simulation data indicate an unavoidable phase transition before any pole is reached. 
Finally, the more accurate PadC approximants present maxima for the pressure better 
than poles. This means that the fluid becomes unstable at high densities and must 
undergo a phase transition, presumably to a solid, in agreement with the simulation 
data. However, it is to be noted that the packing fraction y z 0.88 at  which the 
maxima appear corresponds to a density p* = 1.68, much higher than the density 
p *  = 1.085 at which crystallisation unavoidably occurs, according to the simulation 
data. Probably the location of the instability point would approach the simulation 
value if more virial coefficients were known and the corresponding approximants 
were obtained from them. 

It remains unexplained why the CS equation is so accurate for all densities in spite 
of the fact that it predicts a singularity at the unrealistic packing fraction y = 1 .  That 
is, according to the CS equation, hard spheres seems to ignore packing effects other 
than the proper volume of the spheres until crystallisation occurs. It has been shown25 
that the y = 1 pole in this equation arises from the assumption that the motions of 
a particle in different directions are uncorrelated. Of course, this must not be confused 
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120 M. J. MAESO et a/. 

with the uncorrelation in the movement of different particles, which is only true at 
low densities. 

The CS equation is obtainedI2 from the expansion of the compressibility factor 2 
in terms of the packing fraction y.  The corresponding virial coefficients are ap- 
proached to their nearest integers and a recurrence formula is obtained for the 
approximate virial coefficients. After substitution of the recurrence formula in the 
virial expansion, the summations involved in the virial series can be performed from 
the properties of the geometrical series and their derivatives, resulting finally in the 
CS equation (1). 

It is to be noted that, as a consequence of the method employed in its obtention, 
the virial coefficients B, and B, are not reprbduced exactly by the CS equation. Thus, 
the excellent accuracy of this equation seems to be somewhat fortuitous. Although, 
in obtaining equations of state far the hard-sphere fluid from approximants, it may 
be convenient to prefix a pole at y = 1, as in the Carnahan-Starling equation (1). 
This is the case for generalized approximants recently proposed by the authors26. 
Some of them, in addition to reproducing exactly all known virial coefficients, provide 
excellent accuracy with simulation data for the whole density range. 
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